A NOVEL SYNTHESIS OF HOMOLOGOUS ORSELLINIC ACIDS AND 5-ALKYLRESORCINOLS by J.H.P. Tyman and A.A. Durrani

School of Chemistry, Brunel University, Kingston Lane, Uxbridge, Middlesex

(Received in UK 8 October 1973; accepted for publication 18 October 1973)

We report a novel synthesis of homologous orsellinic acids (I; $R = R_1 = H$, $R_2 = C_n H_{2n+1}$), the monomethyl ethers (I; R = H, $R_1 = CH_3$, $R_2 = C_n H_{2n+1}$), the dimethyl ethers (I; $R = R_1 = CH_3$, $R_2 = C_n H_{2n+1}$) or the parent 5-alkylresorcinols and their dimethylethers, by the use of aromatic rather than acyclic intermediates and precursors, modelled on the biosynthetic pathway, which can lead to a number of products.

Addition of 2,4-dimethoxyfluorobenzene or 3,5-dimethoxyfluorobenzene to an excess of ethereal alkyllithium followed by carbonation of the reaction mixture by discharge onto solid carbon dioxide³ gave either the dimethylorsellinic acid or 2,6-dimethoxy-3-fluorobenzoic acid as summarised in Table I (the reaction proceeded best with R>CH₃)

<u>Table I</u>			
Fluoro Compound	Alkyllithium	Product (I)	Parent Natural Substance
3,5-dimethoxyfluoro benzene	n-CH ₃ li	$R=R_1=R_2=CH_3$	orsellinic acid
11	n-C ₃ H ₇ li	$R=R_1=CH_3, R_2=n-C_3H_7$	divaric acid4
Ħ	n-C ₅ H ₁₁ li	R=R ₁ =CH ₃ , R ₂ =n-C ₅ H ₁₁	olivetol carboxylic acid ⁵
11	^{n-C} 7 ^H 15 ^{li}	R=R ₁ =CH ₃ , R ₂ =n-C ₇ H ₁₅	spherolpherol 6 carboxylic acid
n	n-C ₁₅ H ₃₁ li	R=R ₁ =CH ₃ , R ₂ =n-C ₁₅ H ₃₁	_7
2,4-dimethoxy fluorobenzene	^C 2 ^H 5 ¹ⁱ	R=CH ₃ , R ₁ =H ₁ , R ₂ =F, R ₃ =CH	1 ₂ H, -
		2,6-dimethoxy-3-fluorobenzoic acid	

Traces of the isomeric acids II(R = CH₃, $R_{\xi} = C_n H_{2n+1}$, n = 1,3,5,7,15), having a

characteristic low R_f value in preparative TLC, were present. The dimethylorsellinic acids had the required elementary analyses and possessed the predicted ¹H NMR spectra-with τ values (C_6D_6) at τ -0.43 (1H,CO₂H), 3.83, 3.67 (2H,HAr, 2 doublets, J 2.5 cps, meta), 6.8, 6.67 (6H, OCH₃, S), 7.13 (2H,CH₂Ar, t), 8.73 ((CH₂)_n,S), 9.13 (CH₃,t). 2,6-Dimethoxy-3-fluorobenzoic acid showed the expected splitting of the proton signal of the OCH₃ group by the fluorine atom and the presence of two ortho aromatic protons.

The vicinal elimination of lif, aryne formation (V) and alkyllithium addition by way of III(R = Me, R_3 = H, R_2 = li, R_1 = F) can only occur with 3,5-dimethoxyfluorobenzene due to the substitution of lithium predominantly at o or o/p positions to the methoxy groups indicating the participation of only the more stable orthoxyme.

Decomposition of alkyllithiated mixtures from 3,5-dimethoxyfluorobenzene with water produced the corresponding 5-alkylresorcinol dimethyl ether identical with that obtained by copper-catalysed/quinoline decarboxylation of the dimethylorsellinic acid.

Smooth demethylation of the latter with boron trichloride gave the monomethyl compounds (I; R = H, $R_1 = CH_3$, $R_2 = C_nH_{2n+1}$, n = 1,3,5,7,15). Boron tribromide 10 at a low temperature gave the orsellinic acids having the expected ^{1}H NMR spectra ($^{1}C_6D_6$) with 1 values at $^{1}C_6D_6$ (broad S, 2H, OH.... $^{1}C_2H$) and O-5 (concentration and solvent-dependent, broad S, 1H, HOAr).

References

- 1 A. Sonn and J. Burkhard, <u>Chem.Ber.</u>, 1928, <u>61B</u>, 2479.
- 2 T.M. Harris and R.L. Carney, <u>J.Amer.Chem.Soc.</u>, 1967, <u>89</u>, 6734.
- 3 A.A. Durrani and J.H.P. Tyman, Chem. and Ind., 1972, 762.
- 4 T. Asahina and H. Akagi, Chem. Ber., 1935, 68B, 1130.
- 5 T. Asahina and M. Yasue, Chem. Ber., 1937, 70B, 206.
- 6 A. Hasimoto, J. Pharm. Soc. Japan, 1938, 58, 776.
- 7 This substance has not yet been detected in natural sources, J.H.P. Tyman, <u>J.Chem.Soc.</u>, <u>Perkin I</u>, 1973, 1639.
- 8 D.L. Wilhite and J.L. Whitten, <u>J.Amer.Chem.Soc.</u>, 1971, <u>93</u>, 2858.
- 9 F.M. Dean, J. Goodchild, L.E. Houghton, J.A. Martin, R.B. Morton, B. Parton, A.W. Price and N. Somvichien, <u>Tetrahedron Letters</u>, 1966, 4153.
- 10 J.F.W. McOmie, M.L. Watts and D.E. West, Tetrahedron, 1968, 24, 2289: